KIOXIA KumoScale Documentation

Kubernetes™ CSI Driver Guide v

KumoScale CSI Driver Tenant Management

This section provides an overview to how KumoScale supports multiple tenants with
examples using custom resource files.

° sing_Virtual Clusters to Support Multiple Tenants

e Tenant Parameters

e (Creating tenants

e Adding_the tenant to your Kubernetes cluster
e Moadifying tenants

e Deleting tenants

Using Virtual Clusters to Support Multiple Tenants

KumoScale software provides the ability to separate different applications, customers, or workloads by creating virtual clusters known as
tenants. Each tenant is allocated a certain capacity and performance target. These constraints are validated and updated during each
volume allocation, expansion, and deletion and when adding a new tenant. If a tenant reaches its capacity, a new volume will not be
allocated. If a tenant reaches its performance target, a new volume may be created, but the performance Service Level Agreement (SLA) is
not guaranteed.

Tenants are managed and created by the KumoScale Provisioner service and are identified by a unique value, the tenantID. This ID is
required for all volume management and monitoring commands to maintain isolation between different customers and applications. Each
tenant can only monitor and manage its own volumes and has no visibility to the other tenant volumes.

If no tenant is declared by the user, KumoScale creates a Global Tenant with capacity and performance equivalent to the sum of all
connected KumoScale deployments. If this tenant is used, no information is needed when managing volumes.

Tenant Management using Custom Resource Definitions

KumoScale software provides a Tenant CRD file for specifying tenants, a template is provided at KumoScale_Operator/ks-config-
operator/samples/kumoscale_v1_tenant_cryaml. You can create a new tenant or modify or delete an existing tenant using the kubectl
create, apply, or delete commands with the CRD. The table below shows the parameters supported in the tenant CRD.

Tenant Parameters

tenant L . .
Description Optional/Required
Parameter
name The tenant configuration name; must comply with the Name field as defined in KumoScale Required
equire
Field Types. q
Optional for create
operations.
tenantld Requested tenant ID i
Required for update and
delete.
capacity In GB unless otherwise specified; for example, 100Gi Required
totallOPS The number of IOPS; an integer value Required
totalBWPerS o)) .) .
c Allowed bandwidth in resources in MB unless otherwise specified; for example, 100Mi Required
e

To create a tenant in your cluster you will need to

1. Create the tenant

2. Add the tenant to your cluster

Creating a new tenant
1. Make a copy of the sample tenant CR file Kumoscale_Operator/ks-config-operator/samples/kumoscale_v1_tenant_cryaml. For example
deploy/crds/myapp_tenant1_cryaml.

2. Edit myapp_tenant1_cryaml and specify values for tenant parameters as shown in Tenant Parameters. For example, with name
mytenant and tenantld tenant1.

apiVersion: kumoscale.kioxia.com/v1
kind: Tenant
metadata:
name: mytenant
spec:
#optional
tenantId:tenantl
budget:
#capacity in GB
capacity: 100Gi

totalIOPS: 10000
#in MB
totalBWPerSec: 1000Mi

3. Create the new tenant with

kubectl create -f myapp_tenantl_cr.yaml

A new tenant will be created if there are no identical tenants with the same ID. Capacity and performance requirements are tested only

when allocating a new volume.

To validate the changes were successful for a tenant with id tenant1, enter one of the following commands:

kubectl get tenants tenantl -o wide
kubectl describe tenants tenantl

The status is refreshed every 30 seconds.

Adding the Tenant to your Kubernetes Cluster

Once you have created a tenant, you need to add it to your Kubernetes cluster by following the steps below:

1. Edit the Provisioner secret. For example,for our tenant with ID tenant1 we would specify it as the value of tenantID in the secret file (see

the example provisioner-secret.yaml).

apiVersion: vi
kind: Secret
metadata:
name: kumoscale-provisioner
namespace: kube-system
type: Opaque
stringData:
config.yaml: |-
url: https://<ip address>:<port>
token: kdjfs ...
tenantID: tenantl
authServerTokenUrl: http://someAuthserver
provisionerClientID: ****
provisionerClientScope: ****
provisionerClientSecret: ***
storagenodeClientID: ***
storagenodeClientSecret: ****
storagenodeClientScope: ****

H HHHFHHH

2. Apply the change with

kubectl apply -f provisioner-secret.yaml

Modifying an Existing Tenant

To modify an existing tenant, say tenant1 above, defined in myapp_tenant1_cryaml.

1. Edit the CRD,

kubectl edit -f myapp_tenantl_cr.yaml

2. Change the settings as needed and save the file. Then apply the changes:

kubectl apply -f myapp_tenantl_cr.yaml

3. To validate the changes were successful, enter one of the following commands and verify the change was made:

kubectl get tenants tenantl -o wide
kubectl describe tenants tenantl

The status is refreshed every 30 seconds.

Deleting a Tenant

A tenant can be deleted only if there are no volumes using it. To delete tenant1, the tenant specified above in myapp_tenant1_cryaml,

enter:

kubectl delete -f myapp_tenantl_cr.yaml

To validate the changes were successful, enter one of the following commands:

kubectl get tenants tenantl -o wide
kubectl describe tenants tenantl

You should get a message indicating tenant1 does not exist.

Next: CSI System Management

Copyright © 2022 KIOXIA America, Inc. All Rights Reserved.

